THEORY OF TWO-PHASE POROUS COOLING. I

M. M. Levitan, T. L. Perel'man,* UDC 532.546:536.24
and T. I. El'perin

In conformity with systems of two-phase porous cooling, a statistical model of boiling of a lig~
uid in a porous body consisting of nonintersecting capillaries is set up.

Methods of heat removal from bodies with internal energy sources, based on cooling by a liquid under-
going a phase transformation within a porous wall, have been widely used in recent times. A number of works
[1-5] are devoted tothe theoretical and experimental investigation of the hydrodynamics and heat exchange in
systems of porous two-phase cooling. In the present paper we construct a statistical model of boiling of a lig-
uid inside a porous structure and on the basis of it we formulate the problem of hydrodynamics and heat ex-
change in systems of two-phase porous cooling. In contrast to [1-4], the approach developed in the present
work allows us to take into account the spread of the phase-transition region within the porous body. Anac-
count of this fact can turn out to be significant when analyzing instability of systems of two-phase porous cool-
ing, this being connected with a sudden change of the position of the phase-transition region, when the external
conditions are altered.

Transfer Equations in a Two-Phase System

of Porous Cooling

Let heat sources be distributed inside a porous body (Fig. 1). To remove the heat produced inside and
also supplied from outside, a liquid heat carrier undergoing a phase transformation is pumped through it. As
we know [1], stability of the system of two-phase porous cooling is achieved by the use of a multilayer porous
wall with penetrability increasing in the phase-transformation zone in the direction of motion of the heat car-
rier. Therefore, in the following it is agsumed that penetrability of the wall is a function of the coordinate x.
In the general case the phase-transition region is located somewhere in the depth of the body. Before the start
of this region, for x <xy, filtration of the liquid heat carrier takes place. At the section x =x, conditions are
created for the formation of vapor bubbles in individual capillaries and for their subsequent growth. Beginning
with this location and at the distance A =x, — x4, a phase transition takes place. For x>x, a single-phase flow
of the already gaseous heat carrier takes place,

If we can introduce a single temperature for the porous matrix, liquid, and vapor located in the pores
(this is possible if their temperatures are close to one another), then the densities of the flow of mass, mo-
mentum, and energy in the direction of the x axis can be represented in the form

Tm=pvvv+plvls (l)
2=p-+a,, (2)
. , dT
q=phy--opvphy —0 -—-, (3)
dx

* Deceased.

A. V. Lykov Institute of Heat and Mass Transfer, Academy of Sciences of the Belorussian SSR, Minsk,
Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 30, No. 6, pp. 1058-1064, June, 1976. Original article
submitted October 28, 1974.

This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part
of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $7.50.

693



- e

BN ——
X

XX i
Fig. 1 Fig. 2

Fig. 1. Filtration scheme of a heat carrier in two-phase
porous cooling system.

Fig. 2. Flow of a heat carrier in a uniaxial capillary.
where oy is the flow of momentum in the direction of the x axis transferred as a result of the motion of the

heat carrier. With the expressions (1)-(3) taken into account, the corresponding stationary transfer equations
are written in the form

d
dx (O + 030 =0, (4)
dp _ _ do
dr  dx. + Tor ®)
d d , dT
o Ay Fegu iyl — P (’v _dk_) = r (%), (6)

where T, is the friction force acting on the heat carrier per unit volume from the side of the porous matrix;
r(x) is the density of internal heat sources. Equations {4)-(6) do not define uniquely all the quantities contained
by them. To close this system of equations we have to use model representations of the character of boiling
of the heat carrier in the porous body.

Statistical Model of Boiling Process of Liquid

in a Porous Body

Let a porous body consist of a system of identical cylindrical capillaries arranged parallel in the direc-
tion of the x axis. In experiments concerned with the study of boiling of a liquid in individual capillaries [6], a
periodic emergence of vapor bubbles covering the entire section of capillaries is discovered. The bubbles are
formed on the walls of capillaries at centers of vapor information that exist there (Fig. 2). They rapidly grow
as a result of evaporation from the menisci of liquid located at the ends of the vapor plug. This plug moves
along the capillary together with the stream of liguid, but the column of liquid in front of the vapor plug moves
considerably faster as a result of the growth of the plug. According to experiments, a simultaneous occurrence
of several bubbles in the same capillary is unlikely. After evaporation of the column of liquid in front of the
vapor plug activation of a new bubble takes place. The probability of bubble activation depends on the degree
of superheating of the liquidand numerous other factors. The state of the surface of the capillary, the degree
of purity of the liquid, etc., are among such factors. For the formation of bubbles, the liquid, first of all, must
be superheated, i.e., must have a temperature higher than the saturation temperature at the given pressure
Ty=Tgqat(p).: Let the liquid be: superheated up to the temperature T. Then spherical equilibrant bubbles of
radius

20 dTsat (p)

- . (D
’ T—T, dp

can exist in it. Bubbles of smaller radius will decrease, while bubbles of larger radius will grow. In other
words, centers of vapor formation on the surface of a capillary of radius R >r can be activated, while those
with a dimension R <r cannot. Let centers of vapor formation per unit surface of the capillary be distributed
with respect to the size with the distribution density n(r). Then we can determine the probability of activation
of any center of vapor formation with a dimension greater than r:

o0

o) = j n(w) du/ f n () du, (8)

[

where r is given by the expression (7). The quantity w(r) depends on the superheating T — T, and through it
also on the coordinate x. Therefore, in the following this quantity will be denoted by w(x).

694



7
0 Xy XZ Xa
X
r x5
Fig. 3 Fig. 4

Fig. 3. Flow of the heat carrier in capillaries of the
first and second types.

Fig. 4. Evolution of capillaries of the first type in the
phase space.

Since in the same capillary simultaneously no more than a single bubble can be activated, all capillaries
passing through a unit section of the porous body are divided into two groups (Fig. 3): those with a vapor plug
and those without it. The capillaries of the first group can be characterized by a triplet of numbers: x; — the
coordinate of the first meniscus; x, — the length of the vapor plug; and x5 — the length of the liguid column be-
hind the plug. The capillaries of the second group are adequately characterized by a single number — the co-
ordinate x; of the meniscus. In the space xj, X,, X3 we introduce the density of capillaries N, equal to the num-
ber of capillaries of the first group passing through a unit section of the specimen and having the character-
isties x4, Xy, X3. An analogous characteristic is introduced for capillaries of the second group Nj. These quan-
tities depend not only on coordinates, but can also depend on time.

Capillaries of one group can be transformed into capillaries of the second group as a result of evapo-
ration of the column of liquid in capillaries of type 1 or as a result of emergence of a bubble of vapor in capil-
laries of type 2. Capillaries of type 1 appear from capillaries of type 2 at the instant of occurrence of the
vapor plug. For capillaries in which this occurs x,=0. Subsequently the parameters x;, X, grow, while x; di-
minishes. When x3 becomes equal to zero, the capillary of type 1 is transformed into a capillary of type 2
(Fig. 4). With the growth of xj the functions N and N; must rapidly decrease; therefore, we can assume that
the region of variation of the arguments is — o < Xy < ©; Xy> 0; X3> 0,

The flow in the phase space xy, Xy, X3 is defined as ¢;=v;N, where vj is the rate of variation of the co-
ordinate x;. Then for N the balance equation

N | 0 (9)
— —_ N =
ot T ‘S—: axi (vz ) Q

()

holds, where Q is a quantity equal to the number of capillaries of the first type with the parameters x;, x,, X3
being formed per unit time in unit section of the specimen. The quantity Q{x;, x,, X3) must be proportional to
the number of capillaries of the second type with a meniscus at the point x;+x;. Since capillaries of the first
type arise from x,=0, we can represent Q in the form

Q = ko (x)) Ny (% =+ ;) 6(xp), (10)

where in the coefficient of proportionality we have isolated a term depending on the superheat of liquid w(xy).
Equation (9) is now written in the form

ON 0
O (E) . (C) = B0 N (s + 5 6 (5 (11)
Since we are interested in the stationary case, for the determination of N it is sufficient to have the equations
G
N o W) =) Ny (5 + ) B (12)
(1) :
with the condition
Niz=—0 =0. (13

The condition (13) reflects the fact that capillaries of type 1 arise in the plane x4, X3 of the phase space x;,
X9, X3.
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Capillaries of type 2 arise from capillaries of type 1 at the instant the liquid column evaporates. They
vanish when they are transformed into capillaries of the first type. The balance equation for N has the form

oN 3]
14
of 0x,
where R(x,) is a source reflecting the transition of capillaries of type 1 into capillaries of type 2; R(xi) isa
source characterizing the inverse transition; v'; is the rate of motion of the meniscus in a capillary of the

second type. The number of capillaries of the second type with a meniscus at the point x,, being transformed
into capillaries of type 1 with any lengths of the liquid column and a vapor plug, is given by the expression

(WNv) = R(x)— R (%xy), (14)

R (%) = ST ko (x, — %g) N, (x,) dx,. (15)

0

The number of capillaries of the second type, arising from capillaries of the first type with any length of
the plug, is written in the form

R(x) = (? Ul o dx,. (16)
[

With (15), (16} faken into account, Eq. (14) in the stationary case assumes the form

oo o

4 s P f ko (5, — %) Ny () dy. (1n
3

dx, (v Ny =

Equations (12) and (17) with the condition (13) determine the functions N and N; under the additional condition

fj? f: Ndxdxdx,~+ f N (x)) dx, = N, (18)
00 —o0

—e

where N, is the overall number of capillaries passing through a unit section of the specimen.

Transfer Equations on the Basis of a Statistical

Model of the Boiling Process in a Capillary;Porous Body

On the basis of the statistical model of boiling in a porous body we determine all quantities entering into
the transfer equations (4)-(6). Let the rate of motion of the liquid at the entry into a capillary be u;. For sim-
plification we shall assume that it is the same for capillaries of the first and second types and that vy =v,'. The
rate of motion of vapor in the vapor plug v, is greater than ;. In addition, uy>vy, Vo> Uu,. Having written for
sach of the menisci the condition of continuity of the flow of material, which, for example, for the first of them
has the form

Pq (‘71 —v) =p, (171 —y) =Ty, (19)
where T, is the rate of evaporation, representable, according to [7], in the form

_ _malu
1V 2nR*T

lp () — pl, (20)

by means of several algebraic transformations, with the relation p, <« p;taken into account, we find that

51 = l71 + - ,‘ (21)
Pw
U — T
Uy =u; + ——+ o, (22)
pV, Oy,
- - T
Uy == Uy - Ty -+ T L3 , (23)
pv1 sz tOV:
—_ . 3 T,
U=t =y Gp= 42 g T (24)
Oy, Ov, P
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We infroduce the quantities ny, ny, ng, ny, equal to the mean number of capillaries per given section of the speci-
men x, respectively, with an initial part filled with liquid, a vapor plug, a liquid column behind the vapor plug,
and the final part filled with vapor. It is not difficult to see that these quantities are expressed as follows in
terns of the functions N(x, X,, x3) and Ny(x,):

n,(x) = f Ny (xy) dx, + ;n f fN (%1, %s, X5) dx,dx,dx,, (25)
X 0 0 x
(%) = iNI () dx; + 5 5 _fx” N 92— Y1 4 dindysdys, (26)
13 (x) = efj 5 Ny 92— Y1 Y5 — o) dysdydys, (27
X —~oy,
1y (x) = f j j Ny 92— Y1 Ys— Yo) dydydys. (28)
L Teiy

By means of the quantities thus introduced we can express the density of the flow of vapor, the density of the
flow of liquid, and the total density of the mass flow of the heat carrier as follows:

{Yy =8 (nzp\,z_); + 1,0.0,), (29)
Py = s{mey El + 150, 172): (30)
Ty = S (M3 gy + 100 + 1Dy Uy + 1,0,7,). (31)

The density of the impulse flow connected with the convective motion of the heat carrier is represented in the
form

0, =5 (1,0, U2 + NP 0% + 507 UZ + n,0 V2). (32)
If for At the additive law of compounding thermal conductivities is true, then we can write
M o= hys (g -+ ny) + Ay s(ny + ng) - ;..P_m(l— }:: ni) . (33)
i=

It remains for us to determine the friction force acting on the heat carrier in a unit volume of the porous
body. For this we introduce the quantities 7, p Ty Tey Ty equal to the friction force acting from the side

of unit surface of the capillary on the heat carrier in the given section x, dependent on which side of the capil-
lary falls onto the given section. Then it is obvious that

Ty = A {MTo, T MTo, T MTa, + 10,). (34)
The quantity Twj is expressed in terms of the coefficient of friction (8]

8t,
pv?

(35)

being a function of the number Re of the flow of liquid moving along the capillary, £ =£(Re). In the case of
laminar flow this function has the form

32 uR

e 22 Re= MR,
s Re v
From (35) we obtain
o ui R
To, = —h= ERey), Rey= 1.
1

Analogous expressions can be written for 7, 2 Twgr Ty

Thus, equations of motion are closed in the framework of the model of boiling in a eapillary-porous
body formulated above. Concluding, we note that the theory developed here is valid also for a porous body
consisting of identical capillaries of variable section, simulating a stable system of two-phase porous cooling
with penetrability increasing in the direction of motion of the heat carrier.
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NOTATION

p, density; v, velocity; p, pressure; T,temperature; 7, density of the mass flow; Z, density of impulse flow; q,
density of heat flow; h, enthalpy; A", effective coefficient of thermal conductivity; o, surface~tension: coefficient; vy,
vy, V3, rates of change of the coordinates x;, Xy, X3, respectively; u;, Uy, average velocities of liquid in front of the
first meniscus and column of liquid, respectively; vy, V,, velocities of vapor in the vapor plug and at the exit
from the capillary; o, condensation coefficient; p, molecular weight; R¥, universal gas constant; P(T), satu-
rated vapor pressure at the temperature T; Ay, Ag, Ap.m> coefficients of thermal conductivity of vapor, liquid,
and material of the porous matrix.
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COMBINED MEASUREMENT OF THERMAL PROPERTIES
OF FLUIDS

V. S. Batalov UDC 536.2.023

A dilatometric method for simultaneous determination of the heat capacity and the coefficient
of thermal expansion of fluids is described.

Rapid dilatometric methods for the determination of the thermal diffusivity of materials [1], which have
demonstrated undisputed advantages in the study of heat-transfer parameters [2], can be used as a means for
combined measurement of the properties of thermal expansion and heat capacity in fluids [3].

Among the principal proposals for such an expansion in the area of application of dilatometry (while pre-
serving such important qualities as the nondestructive and highly accurate nature of the method, which is not
based on measurement of temperatures and thermal fluxes in test objects), one should consider the compara-
tive version involving thermal change in the volume of two fluids — a standard (with known values for the volu-
metric heat capacity ¢, and for the coefficient of thermal expansion 8y) and a test fluid (the thermophysical
characteristics e and B of which are subject to determination) — under conditions where the variation of heat
content in each of them ocecurs only because of heat exchange through a boundary separating the fluids (a thin
nondeformable shell).

As a specific model for the realization of the method, it is convenient to select a system of two "im-
bedded" thin-walled metal vessels made of a material with a negligibly small coefficient of thermal expansion
in comparison with the same parameter for the fluids. The fluid with standard properties fills the outer ves-
sel 1 (Fig. 1) in such a way that the inner vessel 3 is completely immersed in the standard fluid, which is in
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article submitted May 15, 1975.

This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part
of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $7.50.

698



